E989: Muon g-2 at Fermilab

David Hertzog, Lee Roberts Co-Spokespersons Chris Polly – Project Manager

Physics Case

Budgets / Timelines

Special Remarks

a_{μ} = (g - 2)/2 can be calculated and measured very precisely to test the completeness of the SM

Known well

Theoretical work ongoing

	Value ($\times 10^{-11}$) units
QED $(\gamma + \ell)$	$116584718.951 \pm 0.009 \pm 0.019 \pm 0.007 \pm 0.077_{\alpha}$
HVP(lo) [20]	6923 ± 42
HVP(lo) [21]	6949 ± 43
HVP(ho) [21]	-98.4 ± 0.7
HLbL	105 ± 26
EW	154 ± 1
Total SM [20]	$116591802 \pm 42_{\text{H-LO}} \pm 26_{\text{H-HO}} \pm 2_{\text{other}} (\pm 49_{\text{tot}})$
Total SM [21]	$116591828 \pm 43_{\text{H-LO}} \pm 26_{\text{H-HO}} \pm 2_{\text{other}} (\pm 50_{\text{tot}})$

New physics enters through *loops. What* might the g-2 signal imply?

Dark Photons

 light new vector particles V kinetically mixed with the photon

Supersymmetry

Difficult to measure at the LHC

The Uninvented

Perhaps the most important of all

Our goal is to achieve *Discovery Threshold*>Fourfold reduction in experimental error

E989 Experimental Scope

Positive muons will be used to measure the muon anomaly to an absolute precision of δa_{μ} = 16 x 10⁻¹¹ (140 ppb). The error budget is distributed as follows:

Category	Error (ppb)	<u>vs BNL E821</u>
Statistical	100	x20 events
Field Systematics	70	x2 better
Precession Systematics	70	x3 better

Follow-up run using Negative Muons is a natural next phase

a_{μ} = (g-2)/2 is derived from the precession of the muon spin in a well-measured magnetic field

Five key areas of focus to achieve the precision goal:

- 1) More Muons, delivered more often to the ring
- 2) Muon Storage Fraction improvement
- 3) Better Modeling of stored beam motions
- 4) Higher Field Uniformity and Monitoring
- 5) Reduced Precession Frequency Systematics

More Muons: A ~2000 m track at FNAL, filled 2.7 x more frequently allows for much higher μ/p production and overall data collection rate

Improved muon Storage Fraction (Kicker, Quads and Inflector Upgrades)

Sophisticated Modeling of beam, ring, decays

Example: Incoming bunched beam spreading and yielding radial distribution

51 Radial bins

Fast Rotation
BD Prediction
Brute Force GEANT

Higher (field) Uniformity: OPERA 3D and refined shimming tools predict improved intrinsic uniformity

Plus:

- Strict temperature stability of building
- Triple fixed NMR probes

Reduced Precession Systematics:

All new detectors, electronics & DAQ

E989 Collaboration: 38 Institutes; >150 Members

Domestic Universities

- Boston
- Cornell
- Illinois
- James Madison
- Massachusetts
- Mississippi
- Kentucky
- Michigan
- Michigan State
- Mississippi
- Northern Illinois University
- Northwestern
- Regis
- Virginia
- Washington
- York College

National Labs

- Argonne
- Brookhaven
- Fermilab

Consultants

Muons, Inc.

Italy

- Frascati,
- Roma 2,
- Udine
- Pisa
- Naples
- Trieste

England

University College London Liverpool Oxford Rutherford Lab

China

Shanghai

The Netherlands:

Groningen

Germany:

Dresden

Japan:

Osaka

Russia:

- Dubna
- PNPI
- Novosibirsk

Survey of Collaboration for P5

Construction	Runnning	Analysis
2014 - 2016	2017-2018	2019 - 2022
91	80	68

Construction Funds (not ops)

Source	\$ M	Comment
DOE OHEP	46.4	CD-1 guidance; \$9 M obligated; \$12 M contingency on remaining (40%)
DOE Early Career	0.5	Casey: trackers (\$2.5 M award)
NSF MRI	3.6	Consortium Proposal; Detectors; Electronics, DAQ, Including 30% match (mostly from Universities)
ITALY: INFN	0.40	Laser calibration
UK: STFC	0.40	Trackers, NMR
China: Shanghai	0.25	PbF2 crystals *
Texas Instruments	0.20	Digitizer chips*

Additionally	50 – 100 M
E821 Components	
And most of the Pbar	
Complex	

Storage Ring, Vacuum, Power supplies, Pbar (now muon) target system, Beamline elements, ... Debuncher, etc etc,

Timeline

Muon g-2 Summary

- Physics case compelling.
 - Is this new physics? What could it be telling us?
- Project fine tuned and optimized
 - Proven components
 - Experienced collaboration: New + Old
 - Timeline relevant to current physics priorities

Interest increasing

Backup

International Collaborators

Areas of contributions:

- China: Shanghai Jiaotong University awarded support for 20% of the Calorimeter Crystals
- Italian groups awarded 1st phase of funding from INFN for Laser Calibration
 - (Frascati, Roma 2, Pisa, Udine, Naples,* Trieste*)
- British groups awarded funding from SFTC for Tracker Development and Absolute Probe
 - Liverpool, UC London, Oxford
 - Others: RAL and Cockcroft under discussion
- Korea KAIST Beam dynamics; will contribute financially
- Russia: Dubna: DAQ visualiztion; Novisibirsk: running, analysis

DOE OHEP Provides

- Storage Ring Move
- Beamlines specific to g-2 (about half of budget)
- Ring assembly
- Kicker, Quad and Inflector upgrades
- Much of the Field work
- Some of the detector work
- Project Management

Rough Yearly Costs during Operations*

Assume accelerator complex is running

- We use 4/20 of protons, parasitic to neutrinos
- We assume beamlines are supported Accelerator operations budget

What is specifically g-2? ~\$1-2 M/year

- Cryogenics operations and cryogens
- People / Visitors
- Maintenance and modest Upgrades

^{*}A matter of definitions of what is g-2 and what is lab operations in general

- 1. Form μ^+e^- atom with low-E μ beam
- 2. Photo-ionize muonium to produce low emittance μ+ beam
- 3. Accelerate μ^+ beam to 300 MeV/c γ = 3, $\gamma\tau$ = 6.6 μ s, goal: 1×10^6 μ^+ /s
- 4. Inject into small superconducting magnet with ppm uniformity
- 5. Measure muon decays with silicon tracker

Precision Magnet and Beam Injection

Hi-rate Si Tracker

- BELLE Sensor
- SiLC based FEE

J-PARC g-2 Experiment

Muon LINAC (300 MeV/c)

- 1. Form μ^+e^- atom with low-E μ beam
- 2. Photo-ionize muonium to produce low emittance μ+ beam
- 3. Accelerate μ^+ beam to 300 MeV/c $\gamma = 3$, $\gamma \tau = 6.6 \mu s$, goal: $1 \times 10^6 \mu^+/s$
- 4. Inject into small superconducting magnet with ppm uniformity
- 5. Measure muon decays with silicon tracker

Precision Magnet and Beam Injection

What drives the design of the measurements? Systematics on Precession

Error	Size	Plan for the E989 $g-2$ Experiment	Goal
	[ppm]		[ppm]
hanges	0.12	Better laser calibration; low-energy threshold;	
		temperature stability; segmentation to lower rates;	
		no hadronic flash	0.02
uons	(0.09)	Running at higher n -value to reduce losses; less	
		scattering due to material at injection; muons	
		reconstructed by calorimeters; tracking simulation	0.02
	(0.08)	Low-energy samples recorded; calorimeter segmentation;	
		Cherenkov; improved analysis techniques; straw trackers	
		cross-calibrate pileup efficiency	0.04
	0.07	Higher n-value; straw trackers determine parameters	0.03
d/Pitch	0.06	Straw trackers reconstruct muon distribution; better	
		collimator alignment; tracking simulation; better kick	0.03
ecay	0.05^{1}	better kicker; tracking simulation; apply correction	0.02
	0.20		0.07
	hanges wons	0.12 hanges 0.12 nuons 0.09 0.08 0.07 d/Pitch 0.06 0.051	hanges 0.12 Better laser calibration; low-energy threshold; temperature stability; segmentation to lower rates; no hadronic flash Running at higher n-value to reduce losses; less scattering due to material at injection; muons reconstructed by calorimeters; tracking simulation Low-energy samples recorded; calorimeter segmentation; Cherenkov; improved analysis techniques; straw trackers cross-calibrate pileup efficiency Higher n-value; straw trackers determine parameters Straw trackers reconstruct muon distribution; better collimator alignment; tracking simulation; better kick better kicker; tracking simulation; apply correction

-arge number of small improvements

Systematics on Field

E821 Error	Size	Plan for the E989 $g-2$ Experiment	Goal
	[ppm]		[ppm]
Absolute field	0.05	Special 1.45 T calibration magnet with thermal	
calibrations		enclosure; additional probes; better electronics	0.035
Trolley probe	0.09	Absolute cal probes that can calibrate off-central	
calibrations		probes; better position accuracy by physical stops	
		and/or optical survey; more frequent calibrations	0.03
Trolley measure-	0.05	Reduced rail irregularities; reduced position uncer-	
ments of B_0		tainty by factor of 2; stabilized magnet field during	
		measurements; smaller field gradients	0.03
Fixed probe	(0.07)	More frequent trolley runs; more fixed probes;	
interpolation		better temperature stability of the magnet	0.03
Muon distribution	0.03	Additional probes at larger radii; improved field	
		uniformity; improved muon tracking	0.01
Time-dependent	_	Direct measurement of external fields;	
external B fields		simulations of impact; active feedback	0.005
Others	(0.10)	Improved trolley power supply; trolley probes	
		extended to larger radii; reduced temperature	
		effects on trolley; measure kicker field transients	0.05
Total	0.17		0.07

Overall, ω_p systematics need to be reduced by a factor of 2.5

Hadronic Contributions on the Lattice

Blum, et al., arXiv:1311.2198v1 [hep-ph] 9 Nov 2013

Lattice

- ◆ Lowest-order: Taking into account current resources and those expected in the next few years, the lattice-QCD uncertainty on a(HVP), currently at the 5%-level, can be reduced to 1 or 2% within the next few years. ... With increasing experience and computer power, it should be possible to compete with the e⁺e⁻ determination of a(HVP) by the end of the decade
- ♦ **HLBL:** ... we emphasize that a lattice calculation with even a solid 30% error would already be very interesting. Such a result, while not guaranteed, is not out of the question during the next 3-5 years.

1 Example: SUSY contribution to a_{ij} :

Difficulty to measure at the LHC

$$a_{\mu}^{SUSY} \approx 130 \times 10^{-11} \left(\frac{100 \text{ GeV}}{M_{SUSY}}\right)^2 \tan\beta \text{ sign}(\mu)$$

Contrary to 1st impressions, LHC limits do not rule out supersymmetry

 $\tan \beta = 40, \ \tilde{m}_3 = 10 \, \text{TeV}$ $\tan \beta = 40, \ \tilde{m}_3 = 12 \, \text{TeV}$ 1800

Example: split supersymmetry → (and many others)

arXiv:1303.6995v1

March, 2013

The muon anomaly is obtained from three well-measured quantities

$$\mu_{\mu}/\mu_{p} = 3.183 \ 345 \ 24(37) \ (120 \ ppb)$$

= 3.183 345 39(10) (31 ppb)